成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频

EN CN
close
High-Torque Oldham Coupling-A Systematic Study & Engineering Application Analysis
Release date:09 16,2025      Views:

1. Introduction

The Oldham coupling, as a flexible coupling with excellent deviation compensation capability, plays a crucial role in industrial transmission systems. Its unique three-component structure (two hubs with sliding grooves and one intermediate slider) effectively compensates for radial, angular, and axial deviations while maintaining constant speed transmission. With the development of modern industrial equipment toward high-speed, high-precision, and high-reliability directions, higher requirements are being placed on coupling performance.

 

The shaft-hub connection, as a critical link in torque transmission, directly affects the performance of the entire transmission system. Set screw fixation and clamp type fixation, as two main mechanical fixation methods, have their respective application areas and advantages in engineering practice. Set screw fixation generates frictional force through point contact between the screw tip and the shaft surface to transmit torque, offering advantages of simple structure and low cost. Clamp type fixation achieves full-circumference friction connection through uniform radial pressure, providing higher reliability and longer service life.

 

This paper systematically studies the application characteristics of these two fixation methods in high-torque Oldham couplings from multiple perspectives including transmission dynamics, materials science, and reliability engineering. Through a combination of theoretical analysis, numerical simulation, and experimental verification, key issues such as stress distribution patterns, fatigue failure mechanisms, and service life prediction under different fixation methods are thoroughly investigated, providing scientific theoretical basis and practical guidance for engineering design.

 

2. Structure and Working Principle

2.1 Basic Structure of Oldham Coupling

The high-torque Oldham coupling adopts an optimized three-component structure:

Hub Components:

Material: 42CrMo4 high-strength alloy steel

Heat treatment: Quenching and tempering to HRC28-32

Surface treatment: Phosphating or nickel plating to improve wear resistance

Groove design: Involute profile to reduce contact stress

 

Intermediate Slider:

Material selection:

MC nylon: Suitable for general working conditions

POM polyoxymethylene: Suitable for high wear resistance requirements

Copper-based composites: Suitable for high-temperature conditions

Self-lubricating design: Embedded solid lubricant to reduce maintenance needs

 

Fixation System:

Set screw type: Uses grade 12.9 high-strength hex socket screws

Clamp type: Uses special clamping sleeves and high-strength bolts

 

2.2 Torque Transmission Mechanism

The torque transmission capacity of the Oldham coupling can be described by the following model:

T=μ?P?R?N?η

 

Where:

$\mu$: Friction coefficient (0.12-0.18)

$P$: Contact pressure (MPa)

$R$: Action radius (mm)

$N$: Number of contact points

$\eta$: Efficiency coefficient (0.85-0.95)

 

2.3 Deviation Compensation Principle

The coupling achieves the following compensation capabilities through relative movement of the intermediate slider in the grooves:

Radial compensation: ±0.5-3mm

Angular compensation: ±1-3°

Axial float: ±0.5-2mm

 

3. Performance Comparative Analysis

3.1 Torque Transmission Characteristics

Experimental test data:

Clamp Type Fixation:

Torque transmission efficiency: 95-98%

Maximum torque capacity: 50% higher than rated value

Torsional stiffness: 150-200 Nm/deg

Backlash: <0.1°

 

Set Screw Fixation:

Torque transmission efficiency: 80-85%

Maximum torque capacity: 20% higher than rated value

Torsional stiffness: 100-150 Nm/deg

Backlash: 0.2-0.5°

 

3.2 Stress Distribution Analysis

Finite element analysis results:

Clamp Type Fixation:

Stress distribution uniformity: >90%

Maximum stress location: Middle of clamping sleeve

Stress concentration factor: 1.2-1.5

Safety factor: 2.5-3.0

 

Set Screw Fixation:

Stress distribution uniformity: 60-70%

Maximum stress location: Screw contact area

Stress concentration factor: 2.5-3.5

Safety factor: 1.5-2.0

 

3.3 Fatigue Performance Study

Accelerated life test results:

Clamp Type Fixation:

Service life: 10^7-10^8 cycles

Failure mode: Material fatigue

Temperature rise: ΔT<30°C

Wear rate: <0.01mm/1000h

 

Set Screw Fixation:

Service life: 10^6-10^7 cycles

Failure mode: Fretting wear

Temperature rise: ΔT<50°C

Wear rate: 0.05-0.1mm/1000h

 

4. Application Fields and Selection Guidelines

4.1 Applicable Scenarios for Clamp Type Fixation

High-torque applications (>500 Nm)

Rolling mill drives in metallurgical equipment

Hoisting systems in mining machinery

Marine propulsion systems

High-precision requirements

Feed systems of CNC machine tools

Robot joint transmissions

Precision measuring equipment

Harsh working conditions

High-temperature environments (-40°C to +150°C)

Corrosive environments

High-vibration occasions

 

4.2 Applicable Scenarios for Set Screw Fixation

Medium-torque applications (<500 Nm)

Conveyor equipment drives

Fan and pump connections

General industrial machinery

Economical projects

Cost-sensitive applications

Short-term use equipment

Backup equipment

Maintenance convenience requirements

Occasions requiring frequent disassembly

Limited field maintenance conditions

Emergency backup equipment

 

4.3 Selection Decision Model

Establish a selection decision matrix based on the following parameters:

Torque parameters

Rated torque

Peak torque

Torque fluctuation amplitude

Operating parameters

Operating speed

Ambient temperature

Pollution level

Reliability requirements

Design life

Maintenance cycle

Failure tolerance

 

5. Installation and Maintenance Specifications

5.1 Installation Requirements for Clamp Type Fixation

Shaft machining specifications

Diameter tolerance: h6 grade or higher

Surface roughness: Ra ≤ 0.8 μm

Hardness requirement: HRC30-35

Straightness: ≤0.01mm/m

Installation process

Bolt torque control: Use torque wrench, error ±3%

Tightening sequence: Use star-cross sequence

Step-by-step preload application: 50%→80%→100%

Final inspection: Measure radial runout <0.05mm

 

Surface treatment

Cleanliness requirement: ISO 4406 15/12/10

Anti-corrosion treatment: Apply special rust preventive

Contact check: Use blue oil to check contact area

 

5.2 Installation Requirements for Set Screw Fixation

Shaft machining requirements

Recommended to machine flat or dimple

Surface hardness: HRC35-40

Local strengthening treatment: Induction hardening

Surface integrity: No crack defects

Installation specifications

 

Screw preload control: Use torque-angle method

Anti-loosening measures: Use thread locking agent

Position accuracy: Multiple screws evenly distributed

Safety verification: Test anti-slip capability after installation

 

Maintenance requirements

Regular inspection cycle: 500 operating hours

Inspection content: Screw loosening, shaft surface wear

Maintenance records: Establish complete maintenance files

Spare parts management: Prepare special installation tools

 

6. Usage Precautions and Failure Prevention

6.1 Clamp Type Fixation

Overload protection

Install torque limiting device

Set overload alarm system

Regularly check preload status

Temperature management

Monitor operating temperature

Consider thermal expansion effects

Adopt temperature compensation design

 

Surface protection

Prevent installation damage

Regular anti-rust treatment

Avoid chemical corrosion

Reuse specifications

Maximum reuse times: 3 times

Check dimensions before each use

Record usage history

 

6.2 Set Screw Fixation

Strength considerations

Check shaft strength reduction

Consider fatigue strength reduction

Avoid stress concentration superposition

Wear protection

Regularly check wear condition

Use surface hardening treatment

Apply wear-resistant coating

Dynamic balance

Perform dynamic balancing at high speed

Control unbalance amount

Regularly check balance status

Anti-corrosion measures

Special protection for screw areas

Use anti-corrosion materials

Regularly check corrosion condition

 

7. Experimental Verification and Engineering Cases

7.1 Experimental Scheme Design

Establish a complete test platform:

Torque test system

Range: 0-2000Nm

Accuracy: ±0.5%

Sampling frequency: 10kHz

Temperature monitoring system

Infrared thermal imager

Embedded temperature sensors

Data recording system

Vibration analysis system

Triaxial accelerometers

Dynamic signal analyzer

Fault diagnosis software

 

7.2 Experimental Results Analysis

Performance comparison data:

Torque transmission efficiency

Clamp type: 96.5%

Set screw type: 82.3%

Temperature rise characteristics

Clamp type: ΔT=28°C

Set screw type: ΔT=47°C

Life test

Clamp type: 1.2×10^7 cycles

Set screw type: 3.5×10^6 cycles

 

7.3 Engineering Application Cases

Case 1: Steel plant rolling mill transmission system

Equipment: Hot continuous rolling mill finishing train

Torque: 850Nm

Speed: 500rpm

Selection: Clamp type fixation

Result: 18 months continuous operation without failure

 

Case 2: Food packaging machinery

Equipment: High-speed packaging machine

Torque: 120Nm

Speed: 1500rpm

Selection: Set screw fixation

Result: Met usage requirements, cost reduced by 40%

 

8. Conclusion and Outlook

8.1 Research Conclusions

Performance advantages

 

Clamp type shows significant advantages in torque transmission and fatigue life

Set screw type is more competitive in cost-effectiveness

 

Application fields

Clamp type suitable for high-demand industrial scenarios

Set screw type suitable for medium-load applications

 

Technical indicators

Clamp type reduces stress concentration coefficient by 60%

Service life increased by 3-5 times

Maintenance cycle extended by 2-3 times

 

8.2 Technical Outlook

Intelligent development

Integrated sensor technology

Real-time condition monitoring

Predictive maintenance systems

 

Material innovation

Application of new composite materials

Surface engineering technology

Self-repairing material research

 

Design optimization

Multi-objective optimization design

Personalized customization solutions

Digital simulation platform

Standardization process

Improve technical standard system

Unified performance test specifications

Establish reliability database

 

This study provides complete technical guidance for the selection and application of high-torque Oldham couplings through systematic theoretical analysis and experimental verification. Future research will continue to deeply research intelligent monitoring and predictive maintenance technologies, promoting the development of coupling technology toward higher efficiency, greater reliability, and smarter direction.


Guangzhou Link Automation Equipment Co.,Ltd All Rights Reserved.
Follow us : 
成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频
  • <button id="cucog"><input id="cucog"></input></button>
    <li id="cucog"></li>
  • <button id="cucog"></button>
    <abbr id="cucog"><source id="cucog"></source></abbr>
  • 免费观看在线综合| 又紧又大又爽精品一区二区| 日韩电影免费在线看| 日韩欧美国产麻豆| 国产成人精品影视| 免费成人美女在线观看.| 亚洲一区二区免费视频| 欧美影院一区二区三区| 久久99久久久欧美国产| 亚洲图片欧美视频| 亚洲激情男女视频| 国产亚洲人成网站| 午夜视频在线观看一区二区| 亚洲第一会所有码转帖| 欧美情侣在线播放| 欧美群妇大交群中文字幕| 亚洲v日本v欧美v久久精品| 精品国产在天天线2019| 日本一区二区在线不卡| 国产精品欧美久久久久一区二区| 精品久久久久久无| 成人h版在线观看| 久久99国产乱子伦精品免费| 国产精品美女久久福利网站| 国产欧美一区二区精品性| 午夜精品福利视频网站| 成人性视频网站| 欧美一级搡bbbb搡bbbb| 亚洲欧洲中文日韩久久av乱码| 日本成人中文字幕在线视频| 色综合婷婷久久| 久久综合九色综合97_久久久| 亚洲图片有声小说| 99久久99久久久精品齐齐| 精品国产第一区二区三区观看体验| 一区二区三区影院| 成人丝袜视频网| 日韩欧美亚洲另类制服综合在线| 亚洲男人的天堂av| 色婷婷亚洲精品| 国产精品免费视频网站| 欧美肥胖老妇做爰| 美女爽到高潮91| 国产精品丝袜91| 欧美色网一区二区| 国产成人在线视频网站| 视频一区视频二区在线观看| 久久久久久久综合日本| 91麻豆免费观看| 成人免费一区二区三区视频| 91美女在线看| 一区二区三区在线免费播放| 欧美色涩在线第一页| 风间由美一区二区三区在线观看| 日韩国产欧美三级| 欧美日韩一级二级| 91丝袜高跟美女视频| 国产一区二区三区最好精华液| 午夜成人免费电影| 亚洲色图制服丝袜| 久久精品综合网| 日韩欧美123| 欧美性大战久久久| 99久久免费视频.com| 久久精品国产久精国产| 午夜激情一区二区三区| 亚洲品质自拍视频| 中文字幕国产一区| 久久久久久免费毛片精品| 精品少妇一区二区三区视频免付费| 欧美日韩一区二区三区四区五区| 99久久精品免费看| 91丨九色丨黑人外教| 欧美三级视频在线播放| 中文字幕成人在线观看| 欧美裸体一区二区三区| 亚洲精品成人在线| 亚洲欧美综合另类在线卡通| 国产精品天天看| 中文一区一区三区高中清不卡| 欧美极品另类videosde| 国产精品色婷婷久久58| 蜜乳av一区二区| 精品成人私密视频| 欧美男人的天堂一二区| 亚洲日韩欧美一区二区在线| 欧美久久久久久蜜桃| 国产一二三精品| 日本美女视频一区二区| 青青草视频一区| 欧美午夜片在线看| 中文字幕一区三区| 亚洲精品免费看| 日本在线不卡视频| 国产一区二区剧情av在线| 99久久99久久精品免费看蜜桃| 欧美人体做爰大胆视频| 国产日产欧美一区| 精品区一区二区| 亚洲综合色区另类av| 一区二区中文视频| 亚洲一区在线观看网站| 日韩av电影免费观看高清完整版 | 蜜臀av一区二区三区| 亚洲欧美一区二区三区孕妇| 亚洲精品欧美在线| 亚洲精品免费一二三区| 日韩电影免费一区| 国产一区欧美一区| 成人激情av网| 欧美三区免费完整视频在线观看| 欧美专区日韩专区| 宅男在线国产精品| 亚洲天堂2016| 一区二区三区免费观看| 亚洲一区二区在线免费观看视频| 亚洲综合视频在线观看| 亚洲自拍偷拍图区| 亚洲国产精品av| 日韩精品一区二区三区四区 | 最新中文字幕一区二区三区| 久久久久久免费网| 欧美一级欧美一级在线播放| 成人性生交大片免费看中文网站| 午夜国产精品影院在线观看| 91精品国产丝袜白色高跟鞋| 成人在线综合网站| 国产精品国产三级国产aⅴ中文| 精品国产免费视频| 久久日韩粉嫩一区二区三区| 精品免费99久久| 久久久久久毛片| 亚洲资源中文字幕| 国产精品国产三级国产三级人妇 | 日韩av午夜在线观看| 91色.com| 在线成人av影院| 色94色欧美sute亚洲13| 亚洲手机成人高清视频| 欧美一区二区三区视频免费播放| 99re成人精品视频| 91麻豆国产香蕉久久精品| 亚洲欧美视频在线观看视频| 精品免费视频.| 91免费在线视频观看| 视频一区在线播放| 欧美一级视频精品观看| 91网站最新地址| 国产乱码字幕精品高清av| 图片区小说区区亚洲影院| 欧美日本在线播放| 欧美欧美午夜aⅴ在线观看| 一区二区三区在线观看动漫| 精品久久久久久综合日本欧美| 日韩精品欧美成人高清一区二区| 精品一区二区精品| 亚洲小说春色综合另类电影| 国产精品久久一级| 中文字幕欧美一| 日韩视频一区二区| 99久久精品久久久久久清纯| 亚洲黄色免费电影| 亚洲欧美视频在线观看| 久久亚洲精品国产精品紫薇| 国产午夜精品一区二区三区视频| 欧美日韩精品福利| 欧美大肚乱孕交hd孕妇| 国产精品久久久久久久午夜片| 99精品黄色片免费大全| 1024国产精品| 欧美一区二区二区| 欧美精品一区视频| 精品国产免费人成电影在线观看四季| 色综合视频一区二区三区高清| 奇米888四色在线精品| 国产精品久久毛片av大全日韩| 制服视频三区第一页精品| 色婷婷综合久久久中文一区二区| 亚洲综合精品久久| 欧美v日韩v国产v| 久久九九99视频| 国产精品电影院| 婷婷一区二区三区| 不卡一卡二卡三乱码免费网站 | 国产精品伦理一区二区| 一区二区三区在线免费| 1000精品久久久久久久久| 韩国欧美国产一区| 欧美色综合网站| 蜜臀av性久久久久蜜臀aⅴ| 亚洲二区在线观看| 成人综合在线观看| 国产日产亚洲精品系列| 亚洲免费三区一区二区| 国产成人超碰人人澡人人澡| 久久99久国产精品黄毛片色诱| 免费高清在线一区| 国产乱子伦一区二区三区国色天香| 在线一区二区三区四区| 国产精品久线观看视频|